

Bestimmung der Säurezahl (TAN) von Mineralölen nach ASTM 664

Beschreibung

Bestimmung von sauren Bestandteilen in Erdölprodukten und Schmiermitteln durch potentiometrische Titration.

Die Gesamtsäurezahl TAN ist die Menge an Base, ausgedrückt in Milligramm Kaliumhydroxid, die erforderlich ist, um alle sauren Bestandteile in 1 g Probe zu neutralisieren. Die Titration erfolgt in einer Mischung aus Toluol, Isopropylalkohol und Wasser mit KOH in Isopropylalkohol. Die Verwendung von Tetrabutylammoniumhydroxid als Titriermittel ist ebenfalls möglich.

Das Ergebnis wird berechnet als mg_{KOH} / g

Geräte

Titrator	TL 7000 oder höher	
Elektrode	N 6480 eth	
Kabel	L1A	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Becherglas 250 mL	
	Magnetrührstab 30 mm	

Reagenzien

1	KOH 0,1 mol/l in Isopropylalkohol	
2	Toluol	
3	Isopropanol	
4	Elektrolyt L 5034 (LiCl 1.5 mol/L in Ethanol)	
5	Destilliertes Wasser	
Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

KOH 0,1 mol/L in Isopropanol

0,1 mol/L KOH in Isopropanol ist als fertige Maßlösung erhältlich. KOH in Methanol oder Ethanol kann ebenfalls verwendet werden.

Die Lösung muss mit einem CO₂-Absorptionsmittel wie Natronkalk vor CO₂ geschützt werden.

Die Titerbestimmung erfolgt wie in der Applikation "Titer KOH" beschrieben.

Lösemittel-Mischung

500 mL Toluol, 495 mL Isopropylalkohol und 5 mL Wasser werden in einer Flasche gemischt.

Reinigung der Elektrode

Zur Reinigung und Konditionierung der Elektrode sind 3 Schritte erforderlich:

Zuerst wird die Elektrode mit dem Lösungsmittelgemisch oder reinem Toluol gespült, um Rückstände der Probe zu entfernen.

Danach wird die Elektrode für 60s in Wasser konditioniert.

Nach dem Konditionierungsschritt wird die Elektrode mit dem Lösungsmittelgemisch gespült, um das Wasser zu entfernen.

Die Elektrode wird in einer Lösung von 1,5 mol/L LiCl in Ethanol gelagert. Wird ein anderer Elektrolyt verwendet, wird dieser Elektrolyt auch zur Lagerung verwendet.

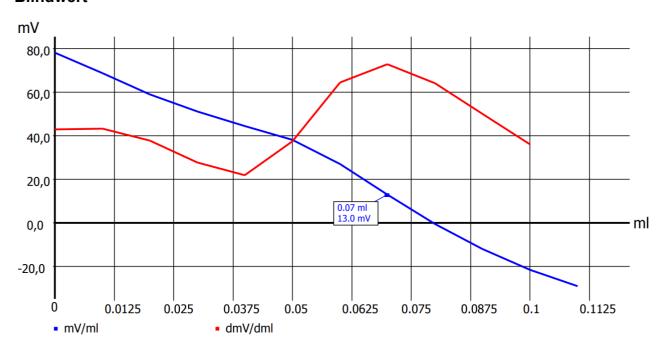
Blindwert

Für die Blindwertbestimmung werden 125 mL Lösemittel in ein 250 mL Becherglas gegeben und mit 0,1 mol/L KOH auf einen Equivalenzpunkt titriert. Der Blindwert sollte kleiner als 0,3 mL sein.

Probenvorbereitung

Die Probe wird in ein 250 mL Becherglas eingewogen, in 125 mL Lösemittel gelöst und mit 0,1 mol/L KOH titriert.

Die Probenmenge sollte so gewählt werden, dass der Verbrauch an 0,1 mol/L KOH sollte nicht mehr als 4-5 mL beträgt, da die Titration sonst zu lange dauert.


Die benötigte Probenmenge kann nach dieser Faustformel abgeschätzt werden:

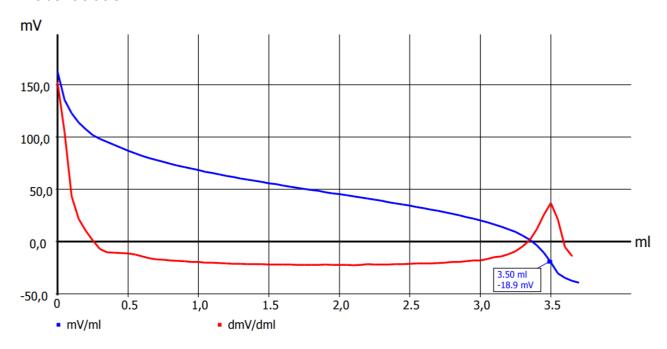
$$W(g) = \frac{20}{erwartete\ TAN}$$

xylem | Titration 147 AN 2

Titrationsparameter

Blindwert

Standardmethode	Blank TAN-TBN		
Methodentyp	Automatische Titration		
Modus	Linear		
Messwert	mV		
Messgeschwindigkeit / Drift	Individuell	Feste Wartezeit	12 s
Startwartezeit	10 s		
Lineare Schrittweite	0,01 mL		
Dämpfung	Stark	Titrationsrichtung	fallend
Vortitration	Aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	60
Max. Titrationsvolumen	0.3 mL		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s


Berechnung:

$$mL = EQ1$$

Die Blindwertbestimmung erfolgt als 3-fach Bestimmung, das Ergebnis wird als globale Variable (z.B. M01) gespeichert.

xylem | Titration 147 AN 3

Probentitration

Standardmethode	TAN ASTM 664		
Methodentyp	Automatische Titration		
Modus	Linear]	
Messwert	mV		
Messgeschwindigkeit / Drift	Individuell	Min. Wartezeit	7 s
		Max. Wartezeit	20 s
		Messzeit	4 s
		Drift	10 mV/min
Startwartezeit	10 s		
Lineare Schrittweite	0,05 mL		
Dämpfung	Stark	Titrationsrichtung	fallend
Vortitration	Aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	120
Max. Titrationsvolumen	6 mL		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Bei Proben mit sehr niedrigen TAN-Werten können die linearen Schritte auf 0,02 oder 0,01 ml reduziert werden.

xylem | Titration 147 AN 4

Berechnung:

$$TAN \left[mg(KOH)/g \right] = \frac{(EQ1 - B) * T * M * F1}{W * F2}$$

В	M01	Blindwert aus globalem Speicher M01	
EQ1		Verbrauch des Titrationsmittels am ersten EQ	
Т	WA	Exakte Konzentration des Titrationsmittels	
М	56,11	Molekulargewicht	
W	man	Einwaage [g]	
F1	1	Umrechnungsfaktor 1	
F2	1	Umrechnungsfaktor 2	

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

